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Abstract In an ecosystem some populations not only consume the resource but also
contribute themselves to the resource after senescence and other deaths and considered
another source of resource. In view of these facts and based on whether the popula-
tion individual is capable of reproduction, a single-species chemostat model with age
structure and the contribution to resource is formulated and analyzed. We introduce
two thresholds �0 and α0 by the method of next generation matrix and further obtain
conditions of stability for equilibria. Our results indicate that the population can be
eradicated if the input concentration of external resource α is controlled under a thresh-
old α0. In addition, the results show that the contribution of population to resource
make threshold value α0 larger, which implies, in view of the biological meaning, that
such contribution plays a negative role in suppressing population.

Keywords Chemostat · Stage structure · Next generation matrix · Global stability

1 Introduction

The chemostat is an important and well-adopted laboratory apparatus used to cul-
ture microorganisms. It has been used for different systems such as lakes, wastewater
treatment processes and biological reactors producing genetically altered organisms.
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Some studies of chemostat models have focused on age-structured single-species sys-
tems of microorganisms feeding on some limited resource. In a chemostat setting,
Droop [1] found that a population of single-celled Monochrysis lutheri showed per-
sistent oscillations at low dilution rates despite attempts to achieve a steady state.
Some models of single-celled organisms feeding on an abiotic resource in a chemo-
stat have incorporated aspects of cell life-history through the cell cycle [2,3] and have
found oscillations for some parameter values, suggesting that oscillations are caused by
cyclic interactions between density dependence and the changing stage or age structure
of the population. McNair et al. [4] studied rotifers feeding on photosynthetic algae
(in the dark, so that the algae could be considered a non-reproducing resource) and
found that the rotifers displayed persistent oscillations. They tried to explain the
observed oscillations using a stage-structured model. Fussmann et al. [5] incorpo-
rated simple age structure of rotifers in a rotifer-alga-nitrogen (predator-prey-resource)
chemostat model and found that the model accurately predicted when persistent oscil-
lations appeared in their experimental community. McCauley et al. [6] isolated stage-
structured cycles from larger amplitude predator-prey cycles in their experiments with
Daphnia feeding on algae. Recently, Toth [7] modeled an age-structured population
feeding on an abiotic resource by combining the Gurtin-Mac- Camy approach with a
standard chemostat model. Toth [8] introduced a single-species age-structured chemo-
stat model with linear uptake of the resource by the population and periodic pulsing
of the resource into the chemostat.

Even though considerably more attention has been given to single-species chemo-
stat models with age structure, most of them ignored the contribution of population
to resource after senescence and other deaths [9]. Motivated by this ideal, we pres-
ent a new age-structured species-resource chemostat model amenable to a general
qualitative analysis. The organization of this paper as follows. In the next section, we
introduce a model and determine two threshold values by the method of the next gener-
ation matrix. In Sect. 3, the existence and local stability of the population-eradication
equilibrium and interior equilibrium are investigated by means of the second additive
compound matrix. In Sect. 4, the global stabilities of equilibria are discussed and brief
conclusion is presented in Sect. 5.

2 Model formulation and thresholds

The model that we analyze is the age-structured species-resource chemostat system

⎧
⎨

⎩

x ′ = α − βx (y1 + σ y2) − δx + γ1 y1 + γ2 y2,

y′
1 = βx(y1 + σ y2) − δy1 − εy1 − γ1 y1,

y′
2 = εy1 − γ2 y2 − δy2,

(2.1)

System (2.1) describes a chemostat containing a resource with concentration x(t) and
a single age-structured population. The variable y1(t) is the concentration of the popu-
lation in the chemostat that is not in reproductive age (we call this group nonproductive
population), while y2(t) is the concentration of the population that is of reproductive
age.
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We make the following assumptions for our models:

(H1) The parameter σ is nonnegative and the others are positive. Here σ = 0 rep-
resents that the reproductive age populations do not consume the resource. In
particular, σ = 1 indicates that population individuals of two ages have the
same uptake rates for resource. Otherwise, not.

(H2) The parameter α is the input concentration of the resource per unit time and
δ is the rate constant with which all organisms wash out of the chemostat.

(H3) The Population not only consumes the resource but also contributes itself to
resource after senescence and other deaths and considered another source of
resource. The terms β and σβ are the consumption rates of resource by nonre-
productive and reproductive individuals, respectively. Some fractions γi , (i =
1, 2) of death populations are transformed into resource.

(H4) Resource consumed by reproductive individuals are converted into the nonre-
productive individuals.

(H5) The parameter ε is the rate of the individuals transferring from the nonrepro-
ductive age y1(t) to the reproductive age y2(t).

For the sake of clarity, let m = δ + ε + γ1, n = δ + γ2. Then model (2.1) becomes

⎧
⎨

⎩

x ′ = α − βx (y1 + σ y2) − δx + γ1 y1 + γ2 y2,

y′
1 = βx(y1 + σ y2) − my1,

y′
2 = εy1 − ny2.

(2.2)

It is obvious that the region {(x, y1, y2)| x > 0, y1 ≥ 0, y2 ≥ 0} is positively invariant
for model (2.2). For y1 > 0 and y2 > 0, adding up the three equations of (2.2), one
gets

(x + y1 + y2)
′ = δ(

α

δ
− x − y1 − y2).

It follows that

lim
t→∞(x + y1 + y2) = α

δ
.

So the dynamics of system (2.2) is restricted in the positive invariant subset � ⊂ R3+
defined by

� =
{
(x, y1, y2) ∈ R3+ : x > 0, y1 ≥ 0, y2 ≥ 0, x + y1 + y2 ≤ α

δ

}

Next, we derive the threshold of model (2.2) by the method of next generation
matrix formulated in [10].

Let z = (y1, y2, x)T . Then model (2.2) can be written as

z′ = F(z) − V (z),
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where

F(z) =
⎛

⎝
βx(y1 + σ y2)

0
0

⎞

⎠ ,

V (z) =
⎛

⎝
my1

εy1 + ny2
α + βx (y1 + σ y2) + δx − γ1 y1 − γ2 y2

⎞

⎠ .

It is easy to see that model (2.2) has a population-eradication equilibrium E0 =
(α

δ
, 0, 0) and the Jacobian matrices of F(z) and V (z) at E0 are, respectively,

DF(E0) =
⎛

⎝
F2×2 0

0
0 0 0

⎞

⎠ , DV (E0) =
⎛

⎝
V2×2 0

0
βα
δ

− γ1
σβα

δ
− γ2 0

⎞

⎠ ,

where

F2×2 =
(

βα
δ

σβα
δ

0 0

)

, V2×2 =
(

m 0

ε n

)

.

Then the term FV −1 is the next generation matrix for model (2.2). It then follows that
the spectral radius of matrix FV −1 is

ρ(FV −1) = βα(σε + n)

δmn
= βα(σε + δ + γ2)

δ(δ + γ2)(δ + ε + γ1)
.

According to Theorem 2 in [10], the threshold of model (2.2) is

�0 = βα(σε + δ + γ2)

δ(δ + γ2)(δ + ε + γ1)
. (2.3)

For a well biological meaning, we obtain an equivalent threshold value from �0 = 1:

α0 = δ(δ + γ2)(δ + ε + γ1)

β(σε + δ + γ2)
. (2.4)

3 Local stability

In this section we focus on the existence and local stability of equilibria. Let the right-
hand side of equalities in model (2.2) be zero. Then model (2.2) has a population-
eradication equilibrium E0 = (α

δ
, 0, 0) if �0 ≤ 1 or α ≤ α0,. Otherwise, model (2.2)

has a unique positive equilibrium E∗(x∗, y∗
1 , y∗

2 ), where
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x∗ = (δ + ε + γ1)(δ + γ2)

β(σε + δ + γ2)
= mn

β(σε + n)
,

y∗
1 = α(δ + γ2)

δ(δ + γ2 + ε)
(1 − 1

�0
), y∗

2 = ε

δ + γ2
y∗

1 .

Thus, we have established the following theorem.

Theorem 3.1 (i) If �0 ≤ 1 or α ≤ α0, then the population-eradication equilibrium
E0 is a unique equilibrium of model (2.2) on �. (ii) If �0 > 1 or α > α0, then model
(2.2) has a unique positive equilibrium E∗(x∗, y∗

1 , y∗
2 ).

From Theorem 3.1, if the external resource input exceeds some threshold value.
Now we are ready to proceed to the stability of equilibria E0 and E∗.

Theorem 3.2 (i) If �0 ≤ 1 or α ≤ α0, then population-eradication equilibrium E0 is
locally asymptotically stable. (ii) If �0 > 1 or α > α0, then population-eradication
equilibrium E0 is unstable and the equilibrium E∗ is locally asymptotically stable.

Proof Computing the Jacobian of system (2.2) evaluated at E0, one gets the following
matrix

J (E0) =

⎛

⎜
⎜
⎝

−δ
−βα

δ
+ γ1 −σβα

δ
+ γ2

0 βα
δ

− m σβα
δ

0 ε −n

⎞

⎟
⎟
⎠ .

Therefore, E0 is locally asymptotically stable if �0 ≤ 1 or α ≤ α0, and unstable if
�0 > 1 or α > α0.

Next, we will prove that the interior equilibria E∗ is locally asymptotically stable.
From β(y∗

1 + σ y∗
2 ) = my∗

1/x∗, it follows that the Jacobian of system (2.2) evaluated
at E∗ is

J (E∗) =

⎛

⎜
⎜
⎝

−δ
my∗

1
x∗ −βx∗ + γ1 −σβx∗ + γ2

my∗
1

x∗ βx∗ − m σβx∗

0 ε −n

⎞

⎟
⎟
⎠ .

Let λi (i = 1, 2, 3) be its eigenvalues with Reλ1 ≤ Reλ2 ≤ Reλ3. From the fact that
m = δ + ε + γ1, n = δ + γ2, and x∗ = mn/[β(σε + n)], it follows that

det J (E∗) = −my∗
1

x∗ [n(m − γ1) − εγ2] < 0.

For det J (E∗) = λ1λ2λ3 < 0, there are two cases:

(1) Reλi < 0 for i = 1, 2, 3;
(2) Reλ1 < 0 ≤ Reλ2 ≤ Reλ3.
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Now we prove the case (2) is not true. It follows from βx∗ < m that trJ (E∗) < 0.

That is λ1 + λ2 + λ3 < 0, along with case (2), we have that Re(λ1 + λ2) < 0 and
Re(λ1 + λ3) < 0.

The second additive compound matrix [11] of J (E∗) (see the Appendix) is as
follows:

J [2](E∗) =
⎛

⎜
⎝

−δ − my∗
1

x∗ + βx∗ − m σβx∗ σβx∗ − γ2

ε −δ − n − my∗
1

x∗ −βx∗ + γ1

0
my∗

1
x∗ βx∗ − m − n

⎞

⎟
⎠ .

Computing directly, it follows that

det J [2](E∗) = −(m + n − βx∗)
[
δ(m − βx∗) + (δ + n)(δ + my∗

1
x∗ )

]

−my∗
1

x∗
[

my∗
1

x∗ (m + n − γ1) + (m − γ1)(δ + m − βx∗) + (δn + εγ2)
]
,

where βx∗ = mn
(σε+n)

is used. Notice that βx∗ < m and m > γ1, then det J [2](E∗) < 0.

According to the property of the second additive compound matrix [11], the eigen-
values of J [2](E∗) are λi +λ j , 1 ≤ i < j ≤ 3. Then (λ1 +λ2)(λ1 +λ3)(λ2 +λ3) < 0.

Notice that Re(λ1 + λ2) < 0 and Re(λ1 + λ3) < 0, then Re(λ2 + λ3) < 0, which
contradicts with case (2). Therefore, Reλi < 0 for i = 1, 2, 3. That is, E∗ is locally
asymptotically stable for �0 > 1. The proof is completed. 
�

4 Global stability

In this section, we first investigate the global stability of the population-eradication
equilibrium E0 of model (2.2), then consider the global stability of the interior equi-
librium by two cases: σ = 1 and σ �= 1 for model (2.2).

4.1 Global stability of the population-eradication equilibrium

Theorem 4.1 (i) If �0 ≤ 1, the population-eradication equilibrium E0 is globally
stable on �;

(ii) If �0 > 1, then the solutions of model (2.2) starting sufficiently close to E0 in
� move away from E0 except that those starting on the invariant x-axis approach E0
along this axis.

Proof Let V = (n + σε)y1 + σmy2. Then the derivative of V along solutions of
system (2.2) is

V ′|(2.2) = [(n + σε)βx − mn](y1 + σ y2).

For x < α/δ, one gets V ′|(2.2) ≤ [(n + σε)
βα
δ

− mn](y1 + σ y2).
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If �0 < 1, then V ′|(2.2) ≤ ηmn(�0 −1)V with η = min{1/m, 1/(σε+n)}. Hence

V (t) ≤ V (0)eηmn(�0−1)t ,

where V (0) = (σε+n)y1(0)+σmy2(0). It follows from �0 < 1 that limt→∞ V (t) =
0. Therefore, E0 is globally attractive. Combined with the local stability, E0 is globally
asymptotically stable on � for �0 < 1.

If �0 = 1, i.e., (n +σε)
βα
δ

= mn, V ′|(2.2) = β(n +σε)(x −α/δ)(y1 +σ y2) ≤ 0.

Since V ′|(2.2) = 0 is equivalent to x = α/δ or y1 + σ y2 = 0, then the maximum
invariant set in {(x, y1, y2) ∈ � : V ′ = 0} is the singleton {E0}. The global stability
of E0 for �0 = 1 follows from LaSalles invariance principle [12].

If �0 > 1, or (n + σε)
βα
δ

> mn, there exists a positive value ε such that (n +
σε)

βα
δ

> mn + ε. Then V ′|(2.2) ≥ [β(n + σε)(x − α/δ) + ε](y1 + σ y2). Therefore,
V ′|(2.2) > 0 for x > α

δ
− ε

(β(σε+n))
, y1 > 0and y2 > 0. This implies that solutions of

model (2.2) starting from the region

�̄ =
{

(x, y1, y2) : x > 0, y1 ≥ 0, y2 ≥ 0, x + y1 + y2 ≤ α

δ
, x >

α

δ
− ε

(β(σε + n))

}

move away from E0. The proof is completed. 
�
Next, we give equivalent results of Theorem 4.1 for a well biological meaning. They
are given in the following corollary

Corollary 4.1 (i) The population-eradication equilibrium E0 is globally stable on �

if α ≤ α0. (ii) The solutions of mode (2.2) starting sufficiently close to E0 in � move
away from E0 except that those starting on the invariant x-axis approach E0 along
this axis if α > α0.

4.2 Global stability of the interior equilibrium

For the convenience, substituting x = α/δ− y1 − y2 into the middle equation of model
(2.2) we obtain

{
y′

1 = β(α/δ − y1 − y2)(y1 + σ y2) − my1,

y′
2 = εy1 − ny2.

(4.1)

Obviously, the dynamical behavior of model (4.1) is the same as that of model (2.2).
Then, we consider system (4.1) in the region int �′ = {(y1, y2) : y1 > 0, y2 >

0, y1 + y2 ≤ α
δ
}.

To investigate the global stability of the interior equilibrium, the following discus-
sion consists of two cases for model (2.2): σ = 1 and σ �= 1.

Case 1: σ = 1. In this case, model (4.1) can be rewritten as

{
y′

1 = β(α/δ − y1 − y2)(y1 + y2) − (δ + ε + γ )y1,

y′
2 = εy1 − (γ2 + δ)y2.

(4.2)

123



118 J Math Chem (2010) 47:111–122

By change of variables:

u = y1 + y2 , w = y2

y1 + y2
, (4.3)

(4.2) becomes

{
u′ = u[k − βu − (γ2 − γ1)w],
w′ = ε − w[h − βu − (γ2 − γ1)w], (4.4)

where k = βα/δ− (δ+γ1), h = βα/δ+ε+γ1 +γ2. By (4.3), the region �′ becomes
�̄′ = {(u, w) : 0 < u ≤ α/δ, 0 < w < 1}. From Theorem 3.1, when �0 > 1, system
(4.4) has a unique positive equilibrium Ē∗(u∗, w∗) in �̄′, where

u∗ = α

δ

(

1 − 1

�0

)

, w∗ = ε

δ + γ2 + ε
.

Further, about the global stability of Ē∗ for system (4.4) we have:

Theorem 4.2 If �0 > 1 and σ = 1, the positive equilibrium Ē∗ of system (4.4) in �̄′
is globally asymptotically stable.

Proof Define functions

V1 = u − u∗ − u∗ ln
u

u∗ and V2 = w − w∗ − w∗ ln
w

w∗ .

Then the derivatives of V1 and V2 along the solution of system (4.4) are

V ′
1|(4.4) = −β(u − u∗)2 − (γ2 − γ1)(u − u∗)(w − w∗)

and

V ′
2|(4.4) = w − w∗

w
[ε − w(h − βu − (γ2 − γ1)w)]

= w − w∗

w
[w∗(h − βu∗ − (γ2 − γ1)w

∗) − w(h − βu − (γ2 − γ1)w)]
= w − w∗

w

[
(w − w∗)(h − βu∗ − (γ2 − γ1)w

∗) + w (β(u − u∗)+
(γ2 − γ1)(w − w∗))

]

Since h − βu∗ − (γ2 − γ1)w
∗ = ε/w∗ = δ + γ2 + ε and w < 1, then

V ′
2|(4.4) = −(w − w∗)2

(
δ + γ2 + ε

w

)

+ β(u − u∗)(w − w∗)

≤ −(δ + γ2 + ε)(w − w∗)2 + β(u − u∗)(w − w∗).
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Define a function by V = θV1 + V2, where θ is a positive constant satisfying

(γ1 − γ2)
2θ2 − 2θβ[γ1 + γ2 + 2(δ + ε)] + β2 < 0. (4.5)

It is easy to verify the existence of value θ for (4.5). Next, taking the derivative of
function V with respect to time along the solutions of system (4.4), one gets that

V ′|(4.4) ≤ −βθ(u − u∗)2 − [θ(γ2 − γ1) − β](u − u∗)(w − w∗) −
(δ + γ1 + ε)(w − w∗)2.

By (4.5), one gets that V ′|(4.4) ≤ 0, and that V ′|(4.4) = 0 if and only if u = u∗, w =
w∗. Therefore, according to the Lyapunov asymptotic stability theorem [13], the pos-
itive equilibrium Ē∗ of system (4.4) in �̄′ is globally asymptotically stable. The proof
is completed. 
�
Corollary 4.2 If α > α0 and σ = 1, the positive equilibrium Ē∗ of system (4.4) in
�̄′ is globally asymptotically stable.

Case 2 σ �= 1. By change of variables:

u = α/δ − y1 − y2 , w = y1 − σ y2,

model (4.1) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′ =
(

δ + σγ1 − γ2

σ − 1

)

(α/δ − u) − βuw + γ2 − γ1

σ − 1
w =: P(u, w),

w′ = βuw + σ(α/δ − u)

(

ε + γ2 − γ1

σ − 1

)

+
(

γ1 − σγ2

σ − 1
− ε − δ

)

w =: Q(u, w).

(4.6)

Correspondingly, the region �1 becomes �̂ surrounded by the lines u = 0, u + w =
α/δ and w = σ(α/δ − u) in the u − w plane. When �0 > 1, corresponding to the
interior equilibrium E∗, system (4.6) has a unique positive equilibrium Ê∗(u∗, w∗) in
�̂, where

u∗ = α

δ�0
, w∗ = α

δ

σε + δ + γ2

δ + γ2 + ε

(

1 − 1

�0

)

.

Since σ �= 1 implies that w + σu − σα
δ

= (1 − σ)y1 �= 0 in �̂, then we can take
Dulac function as B = (w + σu − σα

δ
)−1. Thus

∂(B P)

∂u
+ ∂(B Q)

∂w
=

(
w + σu − σα

δ

)−2 [
(δ + γ2 + βw)

(σα

δ
− σu − w

)

+βσu
(

u + w − α

δ

)]
.
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Notice that σα
δ

− σu − w = (σ − 1)y1 and that u + w − α
δ

= (σ − 1)y2. Then

∂(B P)

∂u
+ ∂(B Q)

∂w
= (σ − 1)

(
w + σu − σα

δ

)−2 [(δ + γ2 + βw) y1 + βσuy2.

This shows that the sign of ∂(B P)
∂u + ∂(B Q)

∂w
is the same as that of σ − 1 Therefore, the

system has no periodic orbits if �0 > 1 and σ �= 1. By Theorem 3.2, Ê∗ is locally
asymptotically stable. Then we have the following result on the global stability of Ê∗.

Theorem 4.3 If �0 > 1 and σ �= 1, the positive equilibrium Ê∗ of system (4.6) is
globally asymptotically stable in int �̂. Summarizing Theorems 4.2 and 4.3 we have:

Theorem 4.4 The interior equilibrium E∗ of model (4.4) is globally asymptotically
stable in � if �0 > 1.

Corollary 4.3 The interior equilibrium E∗ of model (4.4) is globally asymptotically
stable in � if α > α0.

Remark 4.1 From Corollary 4.1, the population can be eradicated if the input concen-
tration of external resource α is controlled under a threshold α0.

Remark 4.2 By (2.4), it is clear that the contribution of population to resource make
threshold value α0 larger. So in view of the biological meaning, this contribution plays
a negative role in suppressing population.

Next, we present some numerical simulations to illustrate our conclusions. Consider
the following choice of parametric values:

β = 1, σ = 0.4, δ = 0.5, γ1 = 0.1, γ2 = 0.1, ε = 0.1, α = 0.2.

It is easy to verify that α0 = 0.328 and the condition of Corollary 4.1 are satisfied.
Hence the population-eradication equilibrium E0 is globally stable. System (2.1) is
numerically solved for the above choice of parameters and time series are drawn in
Fig. 1a. Let α = 1.2 and the other parameters be the same as Fig. 1a. Then the condi-
tion of Corollary 4.3 are satisfied. Hence the interior equilibrium E∗ is globally stable
(see Fig. 1b). Choose α = 2(1 + sin t), that is limiting resource is pumped into the
chemostat periodically, the population tends to oscillate periodically (see Fig. 2).

5 Conclusion

In this study, a single-species chemostat model with age structure and the contribution
to resource is formulated and analyzed. By the method of next generation matrix, we
introduce two thresholds �0 and α0, and further obtain that the population-eradica-
tion equilibrium is globally stable if �0 < 1, and the interior equilibrium is globally
stable if �0 > 1. Our results imply that the population can be eradicated if the input
concentration of external resource α is controlled under a threshold α0. Furthermore,
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Fig. 1 a The stability of population-eradication equilibrium E0. b The stability of interior equilibrium E∗
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Fig. 2 Periodic solution. a Time series. b Phase portrait

it is clear that the contribution of population to resource make threshold value α0
larger. So in view of the biological meaning, this contribution plays a negative role in
suppressing population.

Appendix:the second additive compound matrix

Let A = (ai j ) be a 3 × 3 matrix. Then its second additive compound matrix is as
follows:

A[2] =
⎛

⎝
a11 + a22 a23 −a13
a32 a11 + a33 a12
a31 a21 a22 + a33

⎞

⎠ .

Proposition 1 Let σ A = {λi : i − 1, 2, 3} be the spectrum of A. Then the spectrum
of A[2] is σ A[2] = {λi + λ j : 1 ≤ i < j ≤ 3}.
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